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1. INTRODUCTION

The aim of this paper is to enlarge the scope of the principle of alternation
in Chebyshev approximation by developing alternation criteria for unique
ness, strong uniqueness, and continuous dependence of locally and globally
best approximations. The underlying numbers of alternation points depend
only on the approximating functions, this way describing some of their basic
approximation properties. Parameters are eliminated, but the signs of
alternants are taken into account in order to cover the approximation by
positive exponential sums and analogously defined special y-polynomials
(Braess [4, 7, 8] and Schmidt [16, 17]). Parameter-free generalizations of
varisolvency and normality, based only on alternation, are included. Our
examples lead to new theorems on strong uniqueness and continuity of the
Chebyshev operator and put a series of well-known results into the frame
work of this paper.

2. PRELIMINARIES

Let X be a space of real-valued functions on a totally ordered set Q such
that the Chebyshev norm

II x Ii := sup I x(t)J
IEQ

is finite for every x E X. For simplicity, a weight function is suppressed. For
elements v of a family V of functions in X approximating a function x E X
the notations

BA(x, V) : = {v E V III x - v II ~ II x - w II for all WE V},
LBA(x, V):= {v E V I there is a neighborhood U ofv with v E BA(x, Un V)},
P(x, v, V):= {w E X I v - WE V, II x - v + W [I < II x - v II},
P(x, v, V) := {w E X I v - WE V, II x - v + W Ii ~ II x - v II, W # O},

I:={+I, -I}
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for the sets of globally and locally best approximations and feasible perturba
tions are introduced. The symbol S will be used for nonvoid subsets of 1.

For x EX, R C Q, and SCI the symbol Alt(x, R, S) (resp. alt(x, R, S),
alt(x, R, S» denotes the supremum of all integers k such that there are
points t1 < t2 < ... < tk in R and a sign s E S satisfying

x(ti )(_1)i-l S = II x II
resp. x(ti)(-1 )i-I s > 0, x(ti)(_1)i-l s ~ °

For subsets Y of X the notation

(1 ~ i ~ k)

for i = 1'00" k.

sup Alt (Y, R, S) := sup Alt (y, R, S)
yEY

is introduced, where sup resp. Alt can be replaced by inf resp. alt or alt.
The usual maximal number of alternation points of x on Q is Alt(x, Q, I).

In addition, the sign of x in the first alternation point may be prescribed by
choosing S = {+1} or {-I}. This is important for the approximation by
positive exponential sums and y-polynomials [4, 7, 8, 16, 17]. The restriction
to subsets R of Q is necessary to cover results of spline approximation
(Schumaker [18, 19], Braess [5], and Arndt [1]), as can be seen from Examples
5-7 below.

3. GENERALIZED ALTERNATION CoNDITIONS FOR BEST ApPROXIMATIONS

The criteria for strong uniqueness given in the next section are designed to
fit into the framework of alternation criteria in Chebyshev approximation.
The hierarchy of conditions is described (in generalized form) in Fig. 1.

Following Meinardus and Schwedt [13], a "tangent set" C C X depending
on v E Vand V is used in Fig. 1, which has to satisfy the condition

o E BA(x - v, C) for all x E X with v E LBA(x, V). (1)

The set of sets C C X with (1) is denoted by T(v, V). There are several intrinsic
definitions of tangent spaces or cones in the literature (see, e.g., [6, 8, 11, 13,
15, 23, 24]). Those known to the author all satisfy (I) and are contained in
the cone introduced by Dubovickii and Miljutin [11]. The necessary condition
for best approximations is then implied by defining

N(v, V, R, S) := inf Alt (v - x, R, S),
VEBA(x, V)

XEX

n(R, C, S):= N(O, C, R, S)

for v Eve X, R C Q. SCI, and C E T(v, V).
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FIG. 1. v EVe X, X E X, R C Q, SCI, C E T(v, V). Arrows indicate implications
(dotted when holding under additional assumptions).

Of course, the calculation of necessary numbers of alternation points is only
reduced to the corresponding problem for the tangent set; the latter usually
is a problem of analytical nature and far more complicated, as the following
theorem shows, which is a general application of the "perturbation techni
ques" in Chebyshev approximation [20].

THEOREM 1. For Q := [a, b] C IR and v EVe XC C(Q) let mev, V) be the
supremum ofzero and all integers j such that for all k, I ~ k ~ j, all partitions
ofQ into k subintervals by points a = r0 < ... < rk = b, all signs s E I and all
constants D > 0 there is a W8 E X with Ii w811 < D and W8 + v E V satisfying
w8(t)s <0 in [a,b]for k = I and

wlt)(_1)i-l s > 0 for t E [ri + P8 , rHI - P8], 1 ~ i ~ k - 2,

t E [a, r1 - P8], i = 0, t E [rk-l + P8' b], i = k - I (2)

with P8 > 0, P8 --+ 0 for D--+ O. Then N(v, V, Q, I) = mev, V) +1.

Proof For x E X\ V and k := Alt(v - x, Q, I) one has to show that
k > mev, V) + 1. Now let t1 < ... < tk be chosen maximally with 1 <
k < 00 and (v - x)(t;)(_1)i-l s = II v - x II, s E I. The case k = 1 is obvious.
There are points ri E (ti , t i+1), 1 ~ i ~ k - 1, and E > 0 such that

- II v - x II + E ~ (v - x)(t)(-I)i s ~ II v - x II (3)
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for t E [ri , ti+ll, 1 <; i <; k - 2, and t E h-I , b], i = k - 1, and

- II v - x II <; (v - x)(t)(-l)i S <; II v - x II + € (4)

for t E [ti , ril, 2 <; i <; k - 1, and t E [a, r I ], i = 1, hold. This is easily
achieved by any choice of ri in the interval

Q ..=( . . II(V-x)'t)(-l)i s =llv- XII I)• . t, ,mm t (]t E ti , ti+1

and a sufficiently small € > O. In addition, one can have these estimates with
a fixed € uniformly for all ri varying in a compact subinterval Q~ of Qi' If
k <; m(v, V), then for every positive 8 < € there is a function WB with the
properties stated above. Since the estimates (3) and (4) may be assumed to
hold uniformly in small neighborhoods of the ri, they hold for the ri ± PB
replacing ri when 8 is sufficiently small. From (2), (3), (4), and II WB II < 8 < €

it follows that v + WB E V is a better approximation to x than v. Therefore
k?:= m(v, V) + 1.

The dotted arrows 1 and 2 in Fig. 1 indicate implications holding under
the conditions

sup alt (Y, R, S) < n(C, R, S),

sup alt (Y, R, S) < n(C, R, S).

(5)

(6)

These provide a parameter-free generalization of results of approximation
by varisolvent families (Rice [15]). The assumptions (6) and the weakened
form (5) may be viewed as generalized parameter-free varisolvency conditions.

4. CRITERIA FOR STRONG UNIQUENESS

The concept of strong (local) uniqueness is important for tangential
characterizations [23,24], global analysis [6,8,9], and the Lipschitz con
tinuity of the Chebyshev operator (Theorem of Freud, see, e.g., [10]).
Therefore it is convenient to have simple criteria for (local or global) strong
uniqueness.

DEFINITION. (a) v Eve X is a strongly unique (locally) best approxima
tion to x E X iff there is a K > 0 such that

II x - W II ? II x - v II + K' II v - W II

holds for all WE V (for all WE V Il W, where W is a neighborhood of v).
This is abbreviated by v E SUBA(x, V) (v E SULBA(x, V».
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(7)(1 ~j ~ k)

(b) Let v Eve X, R C Q, and SC I. The symbol Lim alt(v, V, R, S)
denotes the supremum of all integers k such that there are k points t1 < ... <
tk in R, a sign s E S, and a bounded sequence {Vi} C V\{v} such that the limits

lim II V - Vi II (t;)(-1)i-1 s
1~C1J V - Vi

exist and are nonnegative.

(c) A constant lim alt(v, V, R, S) depending only on the local structure
of V near V is defined analogously by restricting the above definition to
sequences {Vi} C V\{v} uniformly converging to v.

lim OIt(v,V,R,S)

I
I
I
J

I
I
I

I

~/'R'5) > L\m <iii!"V,R,5)

I
I
I
I
I
I

AIt(v-x,R,S) > sup C1t(Y,R,S)

/ P(x,v,V)cYcX

/' j '\,
j
= BA(x,V)

j

1

v E BA(x ,V)

Alt(v-x,R,S) > sup all(Y,R,S)

/ P(X,v,V)cYcX\

t A III( v - X, R , S) >

~ /1
V E SULSA(x, V) I 1 I 1

I 1 / I

/ 12 / 3/4 1

vELSA{x,V) I / // I
I / / /

I I / I I. / /

( I I 1/ Io E SA x- v ,C) I / / / I

~ 1/ / /1

All (v-x ,R,S) ~ n(C ,R ,S)

FIG. 2. See caption of Fig. 1.

{v}

v E SUBA(x, V)

Proof for the implications indicated by arrows 5 and 6 in Fig. 2.
Assume to the contrary that there are sequences {Vi} C V and {k i} -- 0

such that k i > 0 and

(i = 1,2,...). (8)

Then Vi ~ V, and the boundedness of {Vi} follows from

II I 1 + k i II IIVi - X II < 1 _ k. v - x .
•
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If Lim is replaced by lim, the sequence {Vi} can be assumed to be convergent
to v. In both cases (8) yields for k > Lim aIt (v, V, R, S) (resp.
lim aIt (v, V, R, S» points t1 < ... < tic in R and a sign S E S with
(v - x)(tj )(-I)i-I S = II v - x II , I ~ j ~ k, the inequalities

Vi - V ()( I)j-l k
II Vi - v II tj

- S < i
(1~j~k).

By passing to a subsequence the nonnegativity of (7) on k points follows,
which is a contradiction. The implications indicated by the dotted arrows 3
and 4 hold whenever the conditions

lim aIt (v, V, R, S) < n(C, R, S),

Lim alt (v, V, R, S) ~ sup alt (Y, R, S)

(9)

(10)

are satisfied.
Inequality (10) may be viewed as a generalized "normality" condition,

because it implies continuity of the Chebyshev operator when combined
with general varisolvency in the form of (6). Furthermore, (14) is a sufficient
condition for the equivalence of strongly unique best approximations and
critical points, cf. the examples of this equivalence in [6, 8] (see Examples 3
and 4 below).

5. ApPLICATIONS

In this section the constants appearing in Figs. I and 2 are calculated for a
series of examples in order to obtain special cases of the above alternation
criteria. For simplicity, Q: = [0, I] is assumed and the notation Vv :=
{v - u I U E V, U =1= v} is introduced.

EXAMPLE I. If V is an n-dimensional Haar subspace of X : = C(Q), then
Theorem I implies N(v, V, Q, I) ~ m(v, V) + I = n + I for v E V, since
there are functions in V with k sign changes, °~ k ~ n - 1, arbitrarily
near k prescribed points in (0, 1). On the other hand, for Y = Vv , X E X,
R C Q, SCI, and C = Vall other constants in Fig. 2 except for Alt (v - x,
R, S) are equal to n. Therefore all statements in Fig. 2 are equivalent.

EXAMPLE 2. If V is a family satisfying the local and global Haar condition
[13] with degree n at v Eve X = C(Q), then

sup aIt (VV , Q, 1) ~ n < n + 1 = n(C, Q, I) (11)

holds, where C stands for the (Haar) tangent space at v. Of course, the left
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and right parts of (11) resemble the global and local Haar conditions. Since
(6) holds, all statements in Fig. 1 are equivalent for Y = Vv , R = Q, S = 1.

The proofs of Barrar and Loeb in [2] can be modified to establish

Lim alt (v, V, Q, 1) < max (n, lim alt (v, V, Q, I»

< max (n, sup alt (C, Q, I» < n

stepwise for elements v E V having maximal degree h, yielding strong uni
queness by (10) and Fig. 2.

EXAMPLE 3. If Me C(Q) is a CI-manifold with boundaries in the sense
of [6], then for v E M and the cone CvM in [6] the inequality lim alt (v, M,
R, S) < lim alt (0, CvM, R, S) holds for all R C Q, SCI. This is easily
proved by mapping (7) into CvM by [6, (3.1)]. By generalizing the concept of
"Haarembedding" to the condition lim alt(O, VvM, R, S) < N(O, CvM, R,S)
on..the tangent cone CvM for a special choice of Rand S, one gets a charac
terization of critical points and (strongly unique) local best approximations
via (9) and Fig. 2. This is a generalization of [6, Satz 7.1].

EXAMPLE 4. For the family En of (generalized) exponential sums

z
vex) = L Pi(x) exp (rix )

i~1

(12)

with real frequencies ri < ... < rz and real polynomials Pi(x) of degree Pi
fulfilling

PI + ... + pz + 1=: k(v) =: k < n

one gets the estimates

sup alt «En)v , Q, I) < n + k,

n(C, Q, I) > n +
where C denotes the tangent space obtained by differentiation of (12) with
respect to the parameters (see, e.g., Rice [15] and Braess [4, 7]). In case
k = I (i.e., for noncoalescing frequencies) one has the situation of Example 2.

The differential equation arguments introduced by Werner [21] and
Schmidt [16] easily show for elements v ofEn having maximal degree k(v) = n
(with 1< n admitted) that the uniform convergence of a bounded sequence
{Vi} of En to v implies the uniform convergence of a subsequence of (Vi - v)!
II Vi - V II to an element w of E2n • The construction of a tangent cone W =
W(v) by Braess [8] shows that WE W. Consequently,

lim alt (v, En, Q, S) < sup alt (Wo , Q, S) (13)
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for any SCI. For a suitable choice of SCI and a parameter L = L(v)
between 1and k = n the arguments of Braess establish

sup alt (Wo , Q, S) ~ n + L - 1 < n + L ~ n(W, Q, S).

This can be viewed as a generalized varisolvency condition (6) for the cone
W. Combined with (13) this inequality implies (9) and local strong uniqueness
of locally best approximations, putting results of Braess ([8, Section 12], for
the general case of normal families of y-polynomials with extended totally
positive kernels of order 2n) into the framework of this paper.

EXAMPLE 5. For the family En+ of termwise positive exponential sums

k

v(x) := L qi exp (rix),
i~1

one has [4]

k = k(v) ~ n, qi > 0, ri E IR,

sup alt «En+)" , Q, Sk) ~ 2k < 2k + 1 ~ n(C, Q, Sk).

Here Sn = I and Sk = {+ I} if k < n, and C = C(v) stands for the cone of
exponential sums

k n

L (aix + Ci) exp (rix) + L dj exp (SjX),
i-I j=k+1

ai, Ci, dj , Sj E IR, 1 ~ i ~ k, k + 1 ~j ~ n, dj ~ 0.

This illustrates the use of prescribing signs by choosing a suitable SCI.
Using the same arguments as in Examples 2 and 4 one gets
Lim alt(v,En +, Q, I) ~ 2n < 2n + 1~ n(C, Q, I) for nondegenerate elements
v of En+ (with k = n). Thus (10) holds and Fig. 2 implies strong uniqueness.

The results of Schmidt [17] suggest that strong uniqueness of a best
approximation v E En+ to a function x E C(Q) could hold as well (but possibly
only locally) in the cases:

(1) k < n, v - x alternates in exactly 2k + 1 points;

(2) k < n, v - x attains II v - x II at 0 and 1.

By enlarging the considered interval and adding degenerating terms like
Vj(x) : = exp (-j(1 + x + e)) to exp (x) in the example of Schmidt [17] one
concludes that (1) is not sufficient and (2) is necessary for local strong uni
queness in case k < n.

The sufficiency of (2) is a consequence of
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R E {{t1 , ••• , t2m+l} Ik ,:;; m, 0 = t1 < ... < t2m+l = I}

be given. Then Lim alt (v, En+, R, {+ I}) ,:;; 2k.

Proof Assume to the contrary that for a bounded sequence {Vi} C En+

and a sequence {k i } --+ IR. tending to zero the inequalities

v - Vi ()( 1)· 1 ' k!i V _ Vi II t j - J- ? - i (1 ':;;j ~ 2k + 1, i = 1,2,...) (14)

hold, where t1 = 0, t2k+l = I, and 2(m - k) interior points of R are dropped.
Passing to subsequences is aHowed and will not be noticed in the sequel.

Assertion I. It can be assumed that the frequencies of Vi are uniformly
bounded and II Vi - v II --+ 0 for i --+ 00.

'fo prove this, let vl be the sum of those terms of Vi having unbounded
frequencies for i --+ 00, and vl := V - Vi2• Then the vl and each of their
terms are uniformly bounded, thus converging to zero in (0, I). This implies
via (14) the inequalities

lim (vl- v)(tj )(-I)i-1 ~ 0
,--> en

(I ':;;j':;; 2k + I).

By counting the zeros of the limit function of vl - v and checking signs at
the boundary one has II vl - v II --+ O. Since each term of Vi2 is bounded by
the maximum of its boundary values, which by (14) are bounded by
k i . II v - Vi Ii -+- II v - vlll , one can bound Vi2(t) by

0':;; vl(t) ,:;; n . (ki II v - Vi II + II v - vllD exp (-dzi). (15)

Here Zi denotes the smallest absolute value of the frequencies of vl and t has
a minimum distance d from the boundary. Setting d := max (t1 , 1 - t2k) and
Ei : = n exp (-dzi ), and using again the information on the signs at the
boundary, one can use (14) and (15) to get

(vl- v)(tj)(-I)i-1 ~ k i II Vi - v II + Ei • (k i Ii v - Vi II + II V - vllD (16)

for j = I, ... , 2k + 1.
Another consequence of (15) is

II Vi - V II ~ 11 + ~ II vl - v Ii ,
- n i

which combined with (16) implies (14) for vl instead of Vi and k i + 0(1)

instead of k i , proving Assertion 1.
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Assertion 2. The limit function 11' of (Vi - v)/II Vi - V II belongs to the
cone of functions

k n

I (aix2 + bix + Ci) exp (riX) + I dj exp (SjX),
i~1 i~k+l

ai' dj ~ 0, bi , Ci , Sj E IR, Si oF ri , I :s;; i < k + I :s;; j :s;; n,

where r1 < ... < rk are the frequencies of

k

vex) =: L qj exp (ri x ),
j~1

qj > 0, I :s;; j :s;; k < n.

Proof By differential equation arguments Qne can easily show that for
each frequency rj of V there are (possibly several) terms of Vi with frequencies
converging to ri' Let these terms be collected into Vii' With Wi(X) := qj
exp (rjx) the identity

•
Vi - Vij - V + Wi

II Vij - Wi II
Vi - V . II Vi - V II

II Vi - V II II Vii - Wj II
Vij - Wi

II Vij - Wi II
(17)

easily leads to the boundedness of the quotients II Vij - Wj II/II Vi - V II and
to II Vij - Wj II -+ °for i -+ 00. This implies that Assertion 2 can be proved
termwise; it suffices to show that (using new notations) the functions

with

satisfy

Z

Vi(X) := I qij exp (rijX),
j=1

veX) := q exp (rx),

Ei := II Vi - V !I-+ °

qii > 0, rii -+ r,

q >0,

lim (Vi - V)(X)fEi = (ax2+ bx + c) exp (rx)
, .... 00

uniformly in x for a ~ 0, b, C E IR. This follows from the uniform convergence
of (a subsequence of) (Vi - V)/Ei and its derivatives and from the decomposi
tion

(Vi - v)(x) = (Vi - v)(o) exp (rx) + x exp (rx) [(:!x - rn,,~o (Vi - V)]

l

+ I qii(rii - r)2 J t2(r, r, rii) exp (tx),
r~1

using generalized divided differences in the notations of [22].
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EXAMPLE 6. Let Sn,k(Yl ,... , Yk) denote the linear space of Chebyshevian
spline functions of degree n with (possibly multiple) fixed knots Yt ,..., Yk in
[0, 1] =: Q (in the notation of [5]). One gets for s E Sn,iYt , ... , Yk) in each
interval Qp,q := [yP 'YPH+l], 1 ~ p < p + q + 1 ~ k the inequalities

sup alt «Sn,k(Yl ,... , Yk»s , Qp,q , I) ~ n + q + 1

and

Alt (s - x, Qr,t , I) ~ n + t + 1

for some interval Qr,t, 1 ~ r < r + t + 1 ~ k, when s is a best approxima
tion to x E X:= C(Q) with respect to Sn,k(Yt , ... , Yk)' The implications in
Fig. 1 can then be verified for any fixed x E X. But the framework of Section 3
of -this paper does not fit this situation because of the dependence of the
intervals Qr,t on the approximated function x.

The arguments of Schumaker [18, proof of Theorem 3.1] can easily be
used to get the following criterion for strongly unique best approximations:

THEOREM 3. The estimation Lim aU (s, Sn,k(Yl ,... , Yk), R, I) ~ n + k + 1
holds for every s E Sn,k(Yl ,... , Yk) and any set Rfrom the set

(18)

implying via Fig. 2 that s E Sn,iYt ,... , Yk) is a strongly unique best approxima
tion to x E X, when a set R ofalternation points belonging to (18) exists.

EXAMPLE 7. For the set Sn,k of Chebyshevian spline functions of degree
n with k free (possibly multiple) knots in Q = [0, 1] one has

sup alt «Sn,k)s , Qp,q , I) ~ n + k + I + 1

for any s E Sn,k with distinct knots °~ Xo < ... < Xr+l ~ 1 and degree I in
Qp,q : = [xp , Xp+Hl]'

As in Example 6 there is no appropriate formulation of a necessary condi
tion for best approximations, which does not involve the approximated
function.

But the methods of Section 4 can be applied again to give a criterion for
strongly unique best approximations, which sharpens a uniqueness theorem
of Arndt [1]:

THEOREM 4. The estimate

Lim alt (s, Sn,k , R, I) ~ n + 2k + 1 (19)
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holds for every s E Sn.k\Sn.k_1Possessing the knots Y1 ~ ... ~ Yk and any set R
from the set

l{ }It1 < ... < tn+2k+2 l
t1 '00" tn-+-2k+2 I ---- . ---- kt2i+l < Yi < tn+2i "::: I ":::

(20)

implying via Fig. 2 that s is a strongly unique best approximation to x EX =

C(Q), ifa set ofalternation points belonging to (20) exists.

Proof. To cope with the possible noncontinuity of limits of (Si - s)/
II Si - s II for Si E Sn.k\{S} one has to replace Lemmas 2.3, 2.2, and 3.1 of
[I] by the statements

(a) (i) If s E Sn,k having knots Xl ~ ... ~ Xk satisfies s(ti)(-l)i a ~ 0,
I ~ i ~ n + k + I, with a E I for points t1 < ... < tn+k+1 , then s vanishes
between some of the ti or ti < Xi < tn+i+1 holds for i = 1"00' k.

(ii) If s alternates in n + k + 2 points, then s vanishes between two
ofthem.

(b) Let the assumptions in (a) (i) prevail; If, in addition, one has
ti+l < Xi < tn+i+l for i = 1'00" k, then s = 0 on Q.

(c) If s E Sn,k\Sn.k-1 has the knots Xl ~ ... ~ Xk, then for every
bounded sequence {s,} C Sn,k\{S} there is no set of points t1 < ... < tn+2/c+2
with t2i+1 < Xi < tn+2i for i = 1'00" k and

1· Sj - s ()( l)i 0
.1m II 'I ti - a ~
}->oo Sj - S I,

for a E I, 1 ~ i ~ n + 2k + 2.

Using only (a) one can easily prove Theorem 3 (in case of a noncontinuous s).
Statement (b) can be reduced to [1, Lemma 2.2] by using an argument of
Schumaker [19] concerning perturbations of the knots at jump locations. By
slight modifications of Arndt's proofs for the corresponding lemmas, one
gets (a) and (c). Finally, Statement (c) proves the theorem. The above
arguments again indicate that the consideration of alternation points instead
of zeros is appropriate.
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